ActiveX implementation in Imagine - first trial

This document briefly describes how we implemented the first ActiveX support in
Imagine (build 245).

In Imagine there is a limited support to communicate with an ActiveX control (or

better to say OLE automation server or OLE control).

The main restrictions are:

* The connected ActiveX has not visual representation. So the current support is not
intended for real ActiveX controls, but rather for libraries of procedures/functions
implemented as ActiveX (or just as OLE automation servers).

* Only procedures/functions/properties of single types are supported. I.e. functions,
which parameters and/or results are arrays, or any kind of pointers, cannot be
called from Imagine.

* The parameters sent to functions of the ActiveX are always converted to strings,
so the ActiveX itself must implement the safecall convention to handle this
situation.

e The events defined in the ActiveX control cannot be used from Imagine

Creating and using an ActiveX object in Imagine

There is a new primitive class named oleobject.

To create an Imagine object, which corresponds to an ActiveX object (the Imagine
wrapper for the ActiveX object) you must create an instance of the oleobject class
giving it the name of the ActiveX object under which it is known to the registry as the
value of comname setting. The comname setting must be set in the input list of the
new procedure and its value cannot be changed later during the lifetime of the
wrapper object.

For example the LEGO RCX brick driver ActiveX control is registered under the
name SPIRIT.SpiritCtrl.1 therefore if we want to create an instance of it and an

Imagine wrapper for that instance, we can write:
new "oleobject [comname SPIRIT.SpiritCtrl.1]

This way an object named olel is created. It corresponds to the ActiveX control in
such a way that all properties of the ActiveX control are accessible as Imagine-like
settings of the olel object and all procedures/functions of the ActiveX control can be
called from Imagine using Imagine syntax.

As for any other Imagine object we can directly set the values of any other settings in
the call to new and we can also give a user-friendlier name to the newly created

control. So in case of the RCX driver we can write:
new "oleobject [comname SPIRIT.SpiritCtrl.l comportno 1 pbrick 1
linktype 0 name brick]

Note that the value of comportno must be set according to the actual port where the
RCX's tower is actually connected.

To be able to use the newly created object meaningfully, we must have its
documentation i.e. we must know what do its settings mean and which
procedures/functions are defined for that object.

A longer example with RCX
Creting the object:

new "oleobject [comname SPIRIT.SpiritCtrl.l comportno 1 pbrick 1
linktype 0 name brick]

To initialise it you must call:

pr brick'initcomm

or if you do not want to see the result:

ignore brick'initcomm

Note that many of the functions have a Boolean result, which can be ignored in many
situations. In C you can always call a function without using its result (i.e. you call it
as a procedure). But in Logo it would result in an error. Therefore you must either do
something with the result or use the ignore primitive to consume the result.

After this we can call functions, which set outputs, for example:
ignore brick'on 1

ignore brick'setpower 1 2 3

ignore brick'off 1

Put a lamp on output B to see the effect.

To manipulate inputs is a bit more work because type and mode of the sensor must be

set. For example if we connect an angle sensor to input 1 then we must infrom the

brick like this:
pr brick'setsensortype 0 4
pr brick'setsensormode 0 7 0O

Then we can read the values:
pr brick'poll 9 0

Or ve can create a textbox named textl and then write:
every 500 [textl'setvalue brick'poll 9 0]

When finishing the work it seems that a call to closecomm is useful to make, but it is

not necessary:
ignore brick'closecomm

Known limitations and problems

* The current implementation brings all the definitions contained into the ActiveX
library into an Imagine wrapper object. It means that the Imagine object, which
corresponds to the ActiveX object holds all type information - it is in the same
time a class and an instance, in a way. It means that you cannot redefine any of the
ActiveX's procedures or functions because then you would lose its declaration in
Imagine.

In the future we plan to implement a way how to import the object types from an
ActiveX library as Imagine classes and just then create objects of those classes.
This approach would better serve for more advanced object-oriented uses in
situations where the user will have more instances of the same ActiveX type. But
in cases where we need only one instance and we will not want to redefine its
procedures the current implementation gives a simple and efficient solution.

* During testing of the described ActiveX with RCX we sometimes experienced
loss of connection (which can be detected as receiving false or an error message
as the result of any call, which should set or get any information and also the
result false of the pbaliveornot call). Each time such problems occurred we had
to restart the computer to get rid of them. We are not sure if this is a physical
problem or it has to do something with the implementation of the ActiveX
support. Please report if you have similar problems and try to give more
information when does it happen.

	ActiveX implementation in Imagine - first trial
	Creating and using an ActiveX object in Imagine
	A longer example with RCX
	Known limitations and problems

